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Abstract

In�nitesimal sensitivities of the posterior distribution P(·|X ) and posterior quantities �(P)
w.r.t. the choice of the prior P are considered. In a very general setting, the posterior P(·|x)
and posterior quantities �(P) are treated as functions of the prior P on the space M of all
probability measures. Qualitative robustness and stability, loosely, then amount to checking if
these functions satisfy continuity and Lipschitz condition of order 1. They thus depend on the
underlying topology and metric on the space M. It is proved that posterior P(·|X ) and posterior
quantity �(P) are qualitatively robust in the total variation topology as well as in the weak
topology under mild conditions. Qualitative robustness of the Bayes risk, on the other hand,
requires rather strong conditions. Stability of posteriors and posterior quantities are also estab-
lished. An intriguing example shows that simply continuity and boundedness of the likelihood
are not enough to guarantee stability of the posterior under the weak convergence metrics. c©
1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bayesian paradigm requires the speci�cation of two inputs; the sampling density
f(X |�), and the prior P(�). A decision theoretic framework requires one to further
specify a third quantity, namely the loss function L(�; a). Since such speci�cations are
only approximations or guesses at best, one would like to study the sensitivity of the
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�nal actions to these various inputs. In this article, we concentrate on studying the
e�ect of imprecision of the prior distribution P(�).
Sensitivity of Bayesian analysis to the choice of the prior has received considerable

attention. We refer the reader to review article by Berger (1994) and the references
therein. The global sensitivity approach considers a class of all plausible priors and
measures the sensitivity by �nding the ranges of relevant posterior quantities. Many
recent works are directed towards in�nitesimal or local sensitivity which examines the
e�ect of in�nitesimal perturbations of the prior (see Basu, 1996).
The well developed robustness theory in frequentist statistics (see Huber, 1981;

Hampel et al., 1986), on the other hand, is built on three central concepts: qualitative
robustness, in
uence function, and the breakdown point. As Huber explains them: (1)
qualitative robustness – a small perturbation (in the model input) should have a small
e�ect; (2) the in
uence function measures the e�ect of in�nitesimal perturbations (in
the model input); and (3) the breakdown point tells us how big the perturbation can be
before the statistical quantity (on which inference is based) becomes totally unreliable.
Loosely, these ideas correspond to (and depend on) the continuity, �rst derivative,
and the distance of the nearest singularity, respectively, of the posterior quantity. The
global and local sensitivity approach of Bayesian robustness are similar to the concept
of the breakdown point and the in
uence curve. One major focus of this article is
towards examining (1) in the context of Bayesian analysis, i.e., studying qualitative
robustness or continuity of posteriors and posterior quantities. However, this is not the
only emphasis. We further develop results that are applicable towards both (2) and (3)
in the context of Bayesian analysis.

1.1. Notations and de�nitions

Before proceeding further, we clarify notations. Let � be the parameter space. In
typical parametric problems �⊆Rk whereas in nonparametric problems � is often
a subset of the space of probability measures. In general, we assume � is a Polish
(complete, separable and metrizable) space, equipped with a metric �(·; ·). Let M be
the space of all probability measures on (�;B) where B is the Borel-�-�eld on �.
Let d(·; ·) be an appropriate metric on M (to be speci�ed later). We assume that the
sampling distributions Q� of data X |� form a dominated family with density (w.r.t.
the common dominating measure) f(X |�). We use standard terminology, X denotes a
random variable while x denotes observed data. We use P(·) (∈M) to denote a prior
probability measure. Let m(P|x)= ∫

� f(x|�) dP(�) denote the marginal w.r.t. prior P.
If m(P|x)¿0; P(·|x), de�ned as P(A|x)= (1=m(P|x)) ∫A f(x|�) dP(�) for any A∈B,
is the posterior probability measure corresponding to the prior P(·). We will implicitly
assume that m(P|x)¿0 whenever we mention posterior P(·|x) or posterior quantity �P .
�(·) and �(·|x) will denote the prior and the posterior densities, respectively (whenever
appropriate). We use �P or �(P) to denote a posterior quantity (such as the posterior
mean) corresponding to the prior P. Since our focus here is on imprecise speci�cation
of the prior P, we suppress the dependence on f in all posterior notations.
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Hampel (1971) �rst used the term “qualitative robustness” in the context of classical
robustness. He de�ned it as equicontinuity of the distribution of the relevant statistic
as the sample size n changes. Since both the sample size n and data x are �xed in
Bayesian analysis, we use the term qualitative robustness to imply continuity in term
of the prior P. The formal de�nition follows.

De�nition 1. (i) The posterior measure P(·|x) is called qualitatively robust at P0 if
∀�¿0; ∃�¿0 such that d(P; P0)¡�⇒d(P(·|x); P0(·|x))¡�.
(ii) Let �P be a posterior quantity taking values in some space 
 equipped with
a metric �(·; ·). �P is called qualitatively robust at P0 if ∀�¿0; ∃�¿0 such that
d(P; P0)¡�⇒ �(�P; �P◦)¡�.

The main concern of qualitative robustness is that if we know priors P and P0 are
“close”, can we guarantee that the two resulting posteriors (or posterior quantities)
will also be “close”? Is this a serious concern? To answer this, we quote the following
from Berger’s (1985) discussion on Diaconis and Ylvisaker’s (1985) article on prior
approximation: “There is a very serious issue concerning such an approximation, how-
ever, namely the issue of whether this good approximation to the prior ensures that
the posterior will also be well approximated. I think the answer, in general, is no”.
For other studies on whether approximately correct priors lead to approximately correct
posteriors, see Diaconis and Freedman (1986) and Kadane and Chuang (1978). Some
of our results on qualitative robustness have already been mentioned in these articles,
either for special cases or as casual remarks without proofs. For example, in the spe-
cial case when �=R, part of Result 6 is available in Kadane and Chuang (1978).
Our Result 1 is implicit in Diaconis and Freedman’s (1986) work on the derivative
of posteriors. We unify these widely dispersed special case results in the very general
setting of a Polish space, and present them in a natural order.
We next examine if the posterior P(·|x) or a posterior quantity �P satisfy a Lipschitz

condition of order 1 in terms of the prior P. Following M�eczarski and Zieli�nski (1991),
we call this notion stability.

De�nition 2. (i) The posterior measure P(·|x) is stable at prior P0 if ∃�¿0 and M¿0
such that for ∀ priors P which satis�es d(P; P0)¡�, we have d(P(·|x); P0(·|x))¡M
d(P; P0).
(ii) A posterior quantity �P is stable at prior P0 if ∃�¿0 and M¿0 such that for ∀P
satisfying d(P; P0)¡�; �(�P; �P◦)¡Md(P; P0).

Why is the concept of stability of interest? First, a Lipschitz condition for the pos-
terior, a notion which is in between continuity and existence of derivatives, is clearly
of mathematical interest. The second interest comes from a robustness viewpoint. If
our imprecisely elicited prior lies within a �-neighborhood of the “true” prior, what
stability guarantees is that the oscillation of the posterior (or a posterior quantity)
is O(�) as �→ 0. M�eczarski and Zieli�nski (1991) explore this notion in a speci�c
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parametric problem, our examination here is completely general. Thirdly, stability al-
most ensures Fr�echet di�erentiability, though not completely. It guarantees that the
relevant limit which de�nes the derivative is bounded.

1.2. Probability metrics

We will use the following well-known metrics (d(·; ·)) on the space M (see Huber,
1981):
(A) Total variation metric: dT (P;Q)= supA∈B |P(A)−Q(A)|. Note that the L1 metric

dL1 (P;Q)=
∫
� |dP(�) − dQ(�)| is equivalent to the total variation metric due to the

relation dL1 (P;Q)= 2dT (P;Q);
(B) Prohorov metric: dP(P;Q)= inf{�¿0 :P(A)6Q(A�) + � ∀A∈B}, where A�=

{�∈� : inf �∈A �(�; �)¡�};
(C) Dudley metric: Let F= {f :�→R; such that sup�∈� |f(�)|61, and |f(�) −

f(�)|6�(�; �) ∀�; �∈�}. Then, dD(P;Q)= sup{|
∫
f(�) dP(�) − ∫

f(�) dQ(�)| :
f∈F} (see Dudley, 1976); and
(D) L�evy metric: This metric is typically used when �⊆Rn. We have dL(P;Q)=

inf{�¿0 :P(X ∈ (−∞; �∼])6Q(Y ∈ (−∞; �∼]
�) + �, and Q(Y ∈ (−∞; �∼])6P(X ∈

(−∞; �∼]
�) + �; ∀�∼ ∈�} where �∼

=(�1; : : : ; �n)T ∈�⊆Rn; (−∞; �∼] denotes⊗n
i=1(−∞; �i], and A� is as in (B) with �(·; ·) being the Euclidean distance on �.
It is well known that the later three metrics metrize the weak convergence topology

whereas the total variation metric metrizes the total variation or strong topology. The
following inequalities are also well known: dL6dP6dT and dP(P;Q)262dD(P;Q)6
4dP(P;Q) (see Dudley, 1976; Huber, 1981). We will use these inequalities in
Corollary 1.
The rest of the paper is organized as follows. In Section 3, we explore qualitative

robustness and stability of posterior distributions, posterior risks and Bayes risks in total
variation metric. Qualitative robustness and stability under weak convergence metrics
are studied in Section 4. We conclude with a brief discussion in Section 5.

2. Motivation

Real-life data are either univariate or at most multivariate. What then is the usefulness
of putting the abstract structure of a Polish space on the parameter space � while
analyzing such data? To answer this question, we point to the recent vigorous growth
of Bayesian nonparametric analysis. In such analysis, the parameter under consideration
is often a function, such as the sampling density or the sampling cdf. Hence, the
resulting parameter space turns out to be an abstract function space. To point out a
speci�c case, Bayesian models using Dirichlet process priors have received considerable
attention recently. In these models, typically, data x are assumed to be observed from a
probability measure Q(x). No parametric structure is assumed on Q. Rather the whole
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probability measure Q is treated as the parameter with parameter space �=M or a
subset of M. Finally, a Dirichlet process (DP) prior or a mixture of Dirichlet process
(MDP) prior is assumed on �. In this setup, a prior robustness investigation requires
consideration of the Polish space structure of �.
In nonparametric Bayes, an alternative to the Dirichlet process prior is a Gaussian

process prior. The logistic transformation of the Gaussian process prior has been used
by Leonard (1978), Thornburn (1986) and Lenk (1988, 1991). A Gaussian process
prior is generally indexed by a mean function �(·) and a variance function �(·).
Suppose we have a base Gaussian process prior GP0(�0; �0) with mean function �0(·),

variance function �0(·). Let GP(�; �) be an approximating Gaussian process prior. It
is known that if the variance functions are not identical, i.e., �0(·) 6= �(·), then the
total variation distance between the base and the approximating prior processes is
dT (GP0(�0; �0); GP(�; �))= 2, i.e., the maximum possible value under the total varia-
tion distance. If (i) �0(·)≡ �(·); (ii) the function �0(·)− �(·) is absolutely continuous
with respect to the common variance �0(·); and (iii) another technical condition is
satis�ed, then

2
{
1− exp

(
−1
8

∫
p2d�0

)}
6dT (GP0(�0; �0);

GP(�; �0))62

√
1− exp

(
−1
4

∫
p2 d�0

)
(1)

where p(·) is the Radon–Nikodym derivative of �0(·)−�(·) with respect to �0(·). If any
of the above three conditions (i)–(iii) is not satis�ed, then dT (GP0(�0; �0); GP(�; �))= 2,
the maximum possible value. For proofs and further discussion of these results, see
Liese and Vajda (1987) (pp. 61–63).
Once again, suppose we have a base Gaussian process prior GP(�0; �0) and an

approximating Gaussian process prior GP(�; �0) where �0(·)− �(·) is absolutely con-
tinuous with respect to �0(·) and p(·)=d(�0(·) − �(·))=d�0(·). If p(·) L

2(�0)−→ 0, i.e., if∫
p2 d�→ 0, it then follows from (1) that dT (GP0(�0; �0); GP(�; �0))→ 0. Can we

guarantee from here that the two posteriors resulting from these two Gaussian process
priors will also be close to each other in total variation topology? The full strength
of our results in the general setup of abstract Polish spaces come into force here. Our
Result 1 guarantees that as long as the likelihood is bounded, the posteriors resulting
out of the two Gaussian process priors will also converge (no matter how compli-
cated the resulting posteriors are). Our Result 4 further guarantees that the resulting
posteriors will, in fact, be stable in the total variation distance.

3. Total variation metric

In this section, we establish qualitative robustness and stability of posterior distribu-
tions and posterior quantities in total variation metric. The typical assumption required
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for all results of this section is that the involved functions be bounded. For example,
to establish either qualitative robustness or stability of the posterior distribution P(·|x),
we require the likelihood f(x|�) to be a bounded function of �. To establish the same
for a ratio-linear posterior quantity �h(P)=

∫
� h(�)f(x|�) dP(�)=m(P|x), we addition-

ally need to assume that h(�)f(x|�) is a bounded function in �. Similarly, to establish
qualitative robustness of the posterior risk, we assume that f(x|�) · L(�; a) is bounded
in � where L(�; a) is the loss function. We repeat these assumptions again in the stated
results for clarity.

3.1. Qualitative robustness

Qualitative robustness w.r.t. the prior P is the question of continuity, i.e., does
approximate priors guarantee approximate posteriors? In the following three results, we
establish qualitative robustness of posterior distributions, posterior quantities, posterior
risks and Bayes risks in total variation topology.

Result 1. Let M be equipped with the total variation topology, generated by dT .
Suppose the likelihood f(x|�); for observed data x; is a bounded function of �. Then
the posterior P(·|x) is qualitatively robust at every P0 ∈M.
Additionally, suppose �h(P)=

∫
� h(�)f(x|�) dP(�)=m(P|x) is a real valued ratio-

linear posterior quantity where the function h(�) ·f(x|�) is bounded in �. Then, under
the Euclidean metric on the real line, the posterior quantity �h(P) is qualitatively
robust at every P0 ∈M.

Proof. See Basu et al. (1993).

For the following two results, we slightly change our direction and focus on a de-
cision theoretic framework. Let L(�; a) denote the loss function for parameter � and
action a. Under observed data x from the sampling distribution f(x|�) and prior P on
the parameter space �, the expected posterior loss (or posterior risk) of an action a is
given by r(P; a)=

∫
L(�; a)f(x|�) dP(�)=m(P|x). Our next result examines the qualita-

tive robustness of the posterior risk. This result is an immediate corollary of Result 1.

Result 2. Suppose f(x|�) ·L(�; a) is a bounded function of � for observed data x and
�xed action a. Then the posterior risk r(P; a) is qualitatively robust under the total
variation metric dT .

Our next investigation focuses on the posterior Bayes risk r(P)= inf a r(P; a). Since
r(P) involves in�mum over all actions instead of a single �xed a, its robustness requires
stronger assumptions.

Result 3. Suppose L(�; a) · f(x|�) is uniformly bounded in � and a; i.e., |L(�; a) ·
f(x|�)|6M for all �∈� and for all actions a. The posterior Bayes risk r(P) is then
qualitatively robust under the total variation metric dT .
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Proof. Take a prior sequence {Pn} converging to a prior P0 in the total variation
topology. Quick calculations yield |r(P0; a)−r(Pn; a)|6(M=m(P0))

∫
� |dP0(�)−dPn(�)|+

M |1=m(Pn)− 1=m(P0)| for every action a. However, the r.h.s. is independent of a, and
tends to zero as n→∞. Hence r(Pn; a)→ r(P0; a) uniformly in a∈A.
For every n and a; r(Pn; a)¿r(Pn). Hence, r(P0)= inf a r(P0; a)= inf a limn→∞ r(Pn; a)

¿ limn→∞ r(Pn). To prove the other inequality, �x �¿0, and for every �xed n, �nd an
such that r(Pn)¿r(Pn; an)−�. Next, �nd N such that n¿N⇒|r(Pn; a)−r(P0; a)|¡� ∀a∈
A. Hence, for n¿N , r(Pn)¿r(Pn; an)− �¿r(P0; an)− 2�¿r(P0)− 2�. This completes
the proof since � is arbitrary.

3.2. Stability

Stability provides us with a stronger robustness criterion than qualitative robustness.
It is also a big step forward, towards establishing the di�erentiability of the posterior
w.r.t the prior. The next result establishes stability of posteriors and posterior quantities
under the total variation metric.

Result 4. LetM be metrized by the total variation metric dT . If the likelihood f(x|�)
is a bounded function of � then the posterior P(·|x) is stable at every P0 ∈M.

Proof. Let f(x|�)6M ∀�. Take a prior P0 ∈M. Since m(P0)¿0 and m(P|x) is con-
tinuous at P0; ∃ a neighborhood P0 of P0 such that m(P|x) is bounded away from
zero on P0, i.e., m(P|x)¿
 (say) ¿0 ∀P ∈P0. Choose a prior Q from this neighbor-
hood P0. It follows that dT (P0(·|x); Q(·|x))6(M=m(P0))

∫ |dP0(�)−dQ(�)|+M |m(P0)−
m(Q)|=(m(Q)m(P0))6(M=m(P0))dL1 (P0; Q) + 2M 2 dL1 (P0; Q)=


2. Since dL1 (P0; Q)=
2dT (P0; Q), this proves that posterior Q(·|x) is stable at the prior P0.

Remark. A similar result holds for ratio-linear posterior quantities.

4. Weak convergence metrics

In this section, we investigate the qualitative robustness and stability of posterior
distributions and posterior quantities under the Prohorov, Dudley or L�evy metrics which
generate the weak convergence topology.

4.1. Non-stable posteriors and posterior quantities

We begin this section with two examples. These examples relate to the work of
Diaconis and Freedman (1986) who establish Fr�echet di�erentiability of posteriors
under total variation topology and comment that the same holds under weak con-
vergence topology if likelihood f(x|�) is bounded and continuous in �. Krasker and
Pratt (1986), in their discussion, mention without proof that Fr�echet di�erentiability



158 S. Basu et al. / Journal of Statistical Planning and Inference 71 (1998) 151–162

under the weak topology “require the further assumption that f(x|�) satisfy a Lips-
chitz condition in � (continuity does not appear to be enough)”. Our Example 1 in
the following, explicitly shows that even when the likelihood f(x|�) is continuous
and uniformly bounded in �, the posterior may not be stable under the L�evy or the
Prohorov metric. This example thus refutes Diaconis and Freedman’s (1986) state-
ment and establishes that the Lipschitz condition on the likelihood f(x|�) proposed
by Krasker and Pratt (1986) is not relaxable for establishing stability and Fr�echet
di�erentiability.

Example 1. For brevity, we will state this example only in terms of the L�evy metric dL
(the same example works for the Prohorov metric). We will also skip many technical
details which can be found in Basu et al. (1993).

Let �= [0; 1] be the parameter space. Let {�n} be a sequence on � converging to 0
(in Euclidean norm). Assume 0¡�n¡
=2 ∀n where 0¡
¡1 is a �xed number. De�ne
P0 = (1 − 
)U [0; 1] + 
�{0} and Pn=(1 − 
)U [0; 1] + 
�{�n} where �{�} denotes the
dirac measure at �. Let F0 and Fn be the cdfs corresponding to P0 and Pn. To simplify
notations, we will often use � to denote a generic element of the sequence {�n} and
P� or F� to denote (1− 
)U [0; 1] + 
�{�}.
By de�nition, dL(P0; Pn)= inf{�¿0 :Fn(�−�)−�6F0(�)6Fn(�+�)+� ∀�}. It is easy

to see that the inside relation holds if we take �= �n. On the other hand, if we take
�¡�n then for �=0; F0(0)¿Fn(�) + �. This shows that dL(Pn; P0)= �n. Since �n→ 0,
we have the prior sequence Pn converging to the prior P0 in terms of the L�evy metric.
Note, however, that for A= {0}; P0(A)= 
¿0, but Pn(A)= 0 ∀n. Hence Pn does not
converge to P0 in the total variation metric.
We next �x the likelihood function. Suppose we observe X =1 from a Bernoulli

distribution with parameter p. However, suppose our interest is not in the parame-
ter p, but in �=p2. In terms of �, we then have the likelihood function f(x|�)= 1−√
�; �∈ [0; 1]. Notice that the likelihood f(x|�) is bounded and, in fact, uniformly

continuous on �= [0; 1].
Once we have the likelihood f(x|�) set up, we proceed to �nd the L�evy distance

between P0(·|x) and a generic member P�(·|x) of the posterior sequence {Pn(·|x)}, i.e.
dL(P�(·|x); P0(·|x)) de�ned as inf{�¿0 :F�(�− �|x)− �6F0(�|x)6F�(�+ �|x) + � ∀�}.
Suppose we take �=0 in the above and write the function g�(�)=F0(0|x)−F�(�|x)−�.

Then, it can be shown through analytical arguments and numerical evaluations that:
(i) g�(�)¿0 for 0¡�6� whenever 06�¡0:01367; and (ii) let �∗� be the smallest
nonnegative root of g�(�)= 0. Then �∗�¿0:1

√
� for all �¡0:0001. This shows that

g�(�)=F0(0|x)−F�(�|x)−�¿0 for 0¡�6�∗� and hence dL(P�(·|x); P0(·|x))¿�∗�¿0:1
√
�

whenever 0¡�60:0001. Notice that
√
� has an unbounded derivative near 0. Thus,

it cannot be dominated by any straight line, i.e., there does not exist K¿0 such that√
�6K� for � near 0.
On the other hand, we have shown that the L�evy distance between the two priors

P� and P0 is dL(P�; P0)= �. This proves that there does not exist any K¿0 such that
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dL(P�(·|x); P0(·|x))¡KdL(P�; P0), i.e., P(·|x) is not stable at P0 in terms of L�evy met-
ric. However, P(·|x) is clearly qualitatively robust in the L�evy metric (which follows
immediately from Result 6).

Example 2. The same example also shows that even if both h(�) and f(x|�) are contin-
uous and uniformly bounded, the ratio-linear posterior quantity �h(P) may not be stable
in terms of the L�evy metric. Consider h(�)= � in the above example. Then h(�) is
bounded and (uniformly) continuous on �= [0; 1]. Take 
=0:5, i.e., P�=0:5U [0; 1]+
0:5�{�}. The posterior mean for this prior P� and likelihood f(x|�)= 1−

√
� (as spec-

i�ed in Example 1) is �h(P�)= {3 + 30�(1 − √
�)}={10(4 − 3

√
�)}. Quick algebra

shows that lim�→0{d�h(P�)=d�}=∞ which implies that the posterior mean �h(P) is
not stable at the prior P0.

4.2. Stability under Dudley and Prohorov metrics

In our next result, we establish that when the likelihood f(x|�) satis�es a Lipschitz
condition, the resulting posterior is stable under the Dudley metric dD. Since the Dudley
metric itself is de�ned in terms of Lipschitz functions (Huber, 1981), in fact, calls it
the bounded Lipschitz metric), it blends easily with a Lipschitz likelihood to give us
stability of the posterior. We then use this result and the relation between Dudley and
Prohorov metrics to show stability of ratio-linear posterior quantities in terms of the
Prohorov metric in Corollary 1.

Result 5. Let the prior space M be metrized by the Dudley metric dD(·; ·). As-
sume (i) the likelihood function is a bounded function of �, i.e., f(x|�)6M1 ∀�;
and (ii) the likelihood is a Lipschitz function of �, i.e., ∃K1¿0 such that |f(x|�)−
f(x|�)|6K1�(�; �) ∀�; � where �(·; ·) is the metric on the parameter space �. Then
the posterior P(·|x) is stable at every P0 ∈M.
If moreover, we have a real valued function h(�) which satis�es (iii) |h(�)f(x|�)|6

M2 ∀�∈�, and (iv) |h(�)f(x|�)− h(�)f(x|�)|6K2�(�; �) ∀�; �, then the ratio-linear
posterior quantity �h(P) is also stable at every P0 ∈M0.

Remark. The conditions assumed on the likelihood f(x|�) for Result 5 to hold may
appear to be too strong. However, they are often easy to check and hold in many
common situations. If the parameter space is a subset of Rn, then (a) f(x|�) is di�er-
entiable; and (b) d=d�f(x|�) is uniformly bounded are su�cient to guarantee that the
likelihood f(x|�) satisfy condition (ii). Similar remarks hold for the function h(�).

Proof of Result 5. For brevity, we will only prove stability of the posterior P(·|x).
The proof for stability of the posterior quantity �h(P) is similar.
Take a prior P0 ∈M. Since m(P0)¿0 and m(P|x) is continuous in weak topology, ∃ a

dD-neighborhood P0 of P0 such that m(P|x)¿
¿0 ∀P ∈P0. Choose prior Q from this
neighborhood. Let F denote the family of all Lipschitz functions which are bounded
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by 1 (as described in the de�nition of the Dudley metric). The Dudley distance between
the posteriors P0(·|x) and Q(·|x) is then given by dD(P0(·|x); Q(·|x))= supg∈F |∫ g(�)
f(x|�)dP0(�)=m(P0)−

∫
g(�)f(x|�) dQ(�)=m(Q)|6 supg∈F{| ∫ g(�)f(x|�)[dP0(�)−dQ

(�)]|=m(P0)+ | ∫ g(�)f(x|�) dQ(�)| |m(P0)−m(Q)|={m(P0)m(Q)}6 supg∈F{1st term+
M1|m(P0)− m(Q)|=
2}.
For an arbitrary g∈F, let g∗(�)= g(�)f(x|�)=(K1 + M1). It is easy to see that

|g∗(�)|61 and |g∗(�)−g∗(�)|6{|g(�)f(x|�)−g(�)f(x|�)|+|g(�)f(x|�)−g(�)f(x|�)|}=
(K1 +M1)6�(�; �) since the likelihood f(x|·) and the function g(·) are both bounded
and continuous. Thus g∗(�) is a member of the family F.
The �rst term inside the supremum, |∫ g(�)f(x|�)[dP0(�) − dQ(�)]|=m(P0)= (K1 +

M1)|
∫
g∗(�)[dP0(�) − dQ(�)]|=m(P0)6(K1 + M1)dD(P0; Q)=m(P0) by de�nition of dD

(P0; Q) since g∗ is a member of F. Similar arguments show that the second term
inside the supremum, |m(P0) − m(Q)|6max(K1; M1)dD(P0; Q). It now follows that
dD(P0(·|x); Q(·|x))6{(K1 +M1)=m(P0) +M1 max(K1; M1)=
2}dD(P0; Q), i.e., the poste-
rior Q(·|x) is stable in the Dudley metric at the prior P0. This completes the
proof.

As mentioned in Section 1.2, the Dudley distance and the Prohorov distance between
two measures P and Q satisfy dP(P;Q)262dD(P;Q)64dP(P;Q). We use the second
inequality to establish stability of the posterior quantity �h(P) under the Prohorov
metric. However, for the complete posterior P(·|x), we can only show that it is Lipschitz
of order 1

2 under the Prohorov metric.

Corollary 1. Assume the conditions for Result 5. Then the posterior P(·|x) satis-
�es a Lipschitz condition of order 1

2 in terms of the prior P under the Prohorov
metric, i.e., for prior P0 ∈M and prior Q in a neighborhood of P0, we have dP(P0(·|x);
Q(·|x))6K√dP(P0; Q) where K¿0 is a �xed number.
Additionally, if h(�)f(x|�) is a bounded Lipschitz function then the ratio-linear

posterior quantity �h(P) satis�es a Lipschitz condition of order 1 in terms of the
prior P and hence stable under the Prohorov metric.

Proof. Stability of the posterior quantity �h(P) is immediate. The result about the pos-
terior P(·|x) follows from the relation between Prohorov and Dudley metrics: dP(P0(·|x);
Q(·|x))6√

2dD(P0(·|x); Q(·|x))6
√
2MdD(P0; Q) (Result 5) 6

√
4M

√
dP(P0; Q).

4.3. Qualitative robustness under weak convergence metrics

We, so far, have refrained from discussing qualitative robustness under weak conver-
gence metrics. For these metrics (Prohorov, Dudley or L�evy), the typical assumption
required to establish qualitative robustness is that all involved functions be bounded
and continuous (as opposed to only boundedness required for the total variation met-
ric). The following result parallels Results 1, 2 and 3 of Section 3. For proof, see
Basu, et al. (1993).
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Result 6. Let M be equipped with the weak convergence topology, generated by
either the Prohorov metric dP or the Dudley metric dD or, if �⊆Rn, by the L�evy
metric dL.
(1) If the likelihood f(x|�) is bounded and continuous in � then the posterior P(·|x)

is qualitatively robust at every P0 ∈M.
(2) In addition, if h(�) · f(x|�) is continuous and bounded, then the ratio-linear

posterior quantity �h(P) is qualitatively robust at every P0 ∈M.
(3) If the loss function L(�; a) is continuous and bounded in �, the posterior risk

r(P; a) is also qualitatively robust.
(4) Suppose L(�; a) ·f(x|�) is uniformly bounded in � and a; and moreover, L(�; a)

is uniformly continuous in � for all actions a. Then the posterior Bayes risk r(P) is
qualitatively robust.

5. Discussion

The local or in�nitesimal approach to sensitivity analysis is an useful technique for
checking robustness, and complements the approach based on global sensitivity analysis.
Local sensitivity analysis in the context of Bayesian robustness, so far, concentrated
on measuring the rate of change of the posterior quantity as the prior varies over the
whole class M, or in a subclass of M. Instead, in this article, we look at qualitative
robustness and stability of posterior distributions and posterior quantities, which are
much weaker in�nitesimal properties.
Our exploration of qualitative robustness and stability yields many interesting results.

We show in Result 5 that an additional Lipschitz condition is needed on the likeli-
hood to establish stability in weak convergence metrics. In Example 1 we show that
just continuity and boundedness of the likelihood are simply not enough to establish
stability under L�evy or Prohorov metrics. Agata Bonotynisho of University of War-
saw has shown us (in written communication) that Example 1 is also true under the
Dudley metric, i.e., a continuous bounded likelihood is again not enough to guarantee
stability.
After qualitative robustness and stability, the next step in local sensitivity check is

the evaluation of the derivative of the posterior (or posterior quantity) w.r.t. the prior.
In parametric problems, this leads to considerations of directional and total derivatives
whereas in nonparametric problems Fr�echet and Gâteaux derivatives come into the
picture. Evaluations of these derivatives often lead to many interesting �ndings. For
recent expositions in this area, see Basu et al. (1996) for parametric derivatives and
Basu (1996) for nonparametric derivatives.
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